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Delta Coherence
Protocols

a distributed shared memory in distributed
computations, and as the replica control
problem in distributed databases. This arti-
cle describes the home update protocol, a
member of the class of coherence proto-
cols called delta coherence protocols that uses
isotach guarantees1 to solve the coherence
problem in a new and highly concurrent
way. (Due to space constraints, and to avoid
obscuring the basic concept of the proto-
cols, we describe the protocol at a high level
and do not address practical implementa-
tion issues.) Our goal is to show how iso-
tach guarantees are useful in solving the
coherence problem and in reasoning about
coherence protocols.

The coherence problem is difficult,
because it requires coordinating events
across nodes. The traditional approach to
the problem is to reduce the coordination
required by limiting concurrency or weak-
ening the correctness criteria. Hardware-
based coherence protocols are tradition-
ally divided into two classes:2 snoopy
protocols, which require a shared bus, and
directory protocols, intended for point-to-
point networks. A shared bus serializes
memory requests. This serialization read-
ily yields an agreed total order among
requests, but it limits concurrency and

scalability. Directory protocols are more
scalable, but existing directory protocols
that enforce sequential consistency (SC)
require that nodes execute requests one at
a time and invalidate or lock copies while
executing write requests. 

Delta protocols use isotach guarantees
to coordinate accesses, an approach that
lets delta protocols enforce SC without
limiting concurrency. However, delta pro-
tocols require isotach guarantees. Whether
delta coherence protocols outperform
existing protocols depends on the cost of
implementing isotach guarantees and on
the extent to which applications can take
advantage of the high level of concurrency
delta protocols offer.

Isotach systems

An isotach (Greek translation: iso, same;
tach, speed) system implements a logical
time system1 in which all messages appear
to travel at the same speed—one unit of
logical distance per unit of logical time.
Given this property, called the isotach
invariant, a processor can control the log-
ical receive time of a message it sends by
controlling the logical send time. 

Neighboring nodes in an isotach system
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exchange signals called tokens to imple-
ment a distributed logical clock. The
pulse at a processor is the number of
tokens the processor has received. An
isotach logical time is a lexicographically
ordered three-tuple in which the first
and most significant component is the
pulse at the processor where the event
occurs. The remaining two components,
the process identifier (pid) and rank, are
tie-breakers used to order send and
receive events that occur in the same
pulse. The sender pid orders events with
identical pulse components. The rank—
or issue order—orders events with iden-
tical pulse and pid components.

The isotach logical time system extends
Leslie Lamport’s logical time system3

by guaranteeing that send and receive
times are consistent with the isotach
invariant: each message travels one unit of
logical distance per pulse of logical time. 
Isotach systems can implement a vari-
ety of distance metrics.4 Here, dist(p, p′)
—the logical distance from node p to
node p′—is the routing distance from p
to p′—that is, the number of switches tra-
versed by a message that p sends to p′. For
any message m that p sends to p′, d(m)—
the logical distance message m travels—
is dist(p, p′). For simplicity, we assume 
distances are static. Distances can be
asymmetric—that is, dist(p, p′) does not
necessarily equal dist(p′, p). By the isotach
invariant, for any message m, m’s logical
receive time is exactly d(m) pulses after
m’s logical send time, so tr(m) = ts(m) +
d(m). (The scalar quantity d(m) is added
to the tuple ts(m) by adding d(m) to the
tuple’s pulse component.) We assume
processors execute messages in receive
order. Thus, for any message m, tx(m)—
m’s logical execution time—equals tr(m).

This assumption is for simplicity and is
stronger than necessary.5

Most delta protocols require an isotach
system that supports predictable responses. A
predictable response is a message m′ sent
in response to another message m such
that we can predict the send time of m′
from the receive time of m: ts(m′) = tr(m) + 
c. For simplicity, we assume c is 0. (In any
practical system, c is a small tunable sys-
tem constant, greater than zero.) Given
the isotach invariant and knowledge of the
logical distances involved, we can predict
the receive time of m′ from the send time
of m: tr(m′) = ts(m) + d(m) + d(m′). A pre-
dictable response inherits the original
message’s pid and rank components.

Each processor has a switch interface
unit (SIU) that tracks logical time and acts
as the interface between applications and
the isotach system. An application can
assume that the isotach system will appear
to execute its messages in the order issued.
Given the isotach invariant and the
assumption that the system will execute
messages in the order received, an SIU can
control the relative order in which locally
issued messages appear to be executed. 
In particular, an SIU can ensure that a
batch of locally issued messages appear to
be executed at the same time by sending
the messages so that the destinations
receive the messages in the same logical
pulse. An SIU can also ensure that mes-
sages issued in a sequence appear to be
executed in that sequence by sending the
messages so that the destinations receive
the messages in nondecreasing pulses.

Isotach systems can be implemented
using the isonet algorithm, in which net-
work switches route messages in logical
time order.1 Alternatively, an implemen-
tation can shift the work of ordering mes-

sages to the SIUs to permit the use
of commodity switches. The Iso-
tach Project at the University of
Virginia has implemented a proto-
type system based on this approach
on a cluster of commodity PCs con-
nected with Myrinet.6 Both algo-
rithms are scalable, requiring the
exchange of tokens only among
nearest neighbors. In the prototype,
which implements isotach func-
tionality in software, the roundtrip,

user-to-user-level latency of isotach mes-
sages is on the order of 50 µsec, about
twice that of nonisotach messages on the
same hardware.7 To further reduce the
cost of maintaining isotach guarantees,
we are redesigning the messaging-layer
software and building a second-genera-
tion prototype with custom SIUs.

Model

The coherence problem occurs in sev-
eral contexts, each with its own termi-
nology. The terms used here are from
the literature on cache coherence. We
rely on the reader interested in DSM or
replica control to make the appropriate
translations.

We consider a system consisting of
multiple processors connected to a mem-
ory system. The memory system encap-
sulates the representation of shared
memory and the procedures for access-
ing it. The processor–memory system
interface is as follows:

• Processors issue read and write
requests to the memory system. A
read request (READ) on v instructs the
memory system to return the value of
v; a write request (WRITE) on variable
v instructs the memory system to
assign a specified value to v. A variable
is shared if more than one processor
can issue requests on it. We consider
only shared variables.

• The memory system returns a value
in response to each READ.

Internal details of the memory system
are not visible to the processors. 

A memory system consists of inter-
connected memories and controllers pro-

for copy c
δ(c) The delta of c. In home update protocol, dist(home, c)

for operation op executed on copy c
ts(op) Send time of op related by isotach invariant:
tr(op) Receive time of op tr(op) = ts(op) + d(op)
d(op) Logical distance of op

tx(op) Execution time of op tx(op)  = tr(op), by assumption
teffx(op) Effective execution time of op teffx(op) = tr(op) – δ(c)
xdist(op) Execution distance of op xdist(op) = teffx(op) – ts(op) = 

d(op) – δ(c)

Figure 1. Delta coherence protocol terms and notation.

}
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grammed to execute a coherence proto-
col. The memory space is partitioned
across the memory modules (MMs). Each
processor has a cache memory and cache
controller (CC), which manages the cache
and translates locally issued requests into
operations. An operation reads, writes, cre-
ates, or destroys a copy of a variable. The
CC generates one or more write opera-
tions (writes) for each WRITE and a sin-
gle read operation (read) for each READ.
The phrase “the execution of request R
on copy c” means “the execution of the
operation resulting from R that is exe-
cuted on copy c.” In a delta protocol, the
CC also acts as the SIU—that is, it tracks
logical time and controls the logical send
times of locally issued operations.

For each variable v, the primary
copy—called the home copy—is located in
an MM. The MM containing v’s home
copy is v’s home. Secondary copies—called
cache copies—are located in the cache
memories. In a static copyset protocol, the
number and locations of cache copies are
determined statically. In a dynamic copyset
protocol, the memory system can create
and destroy cache copies. A request for v
is a hit if a copy of v is in the issuing
processor’s cache; otherwise it is a miss.

In a delta protocol, the memory sys-
tem sends each operation as an isotach
message. The logical distance and the
send, receive, and execution times of an
operation are those of the message car-
rying the operation. An operation on the
local cache copy is sent as a self-message—
an isotach message that a processor sends
to itself. Because self-messages do not
enter the network, for any self-message
m, d(m) = 0 and tr(m) = ts(m). Figure 1
summarizes terms relevant to operations
in a delta protocol.

Each copy c in a delta protocol has a
delta, denoted δ(c). In the home update
protocol, δ(c) = dist(home, c)—the number
of logical time pulses required to propa-
gate an update and thus the number of
pulses by which c lags behind the home
copy. The delta of a home copy is zero.
For any operation op on c, teffx(op), op’s
effective execution time is tx(op) – δ(c).
Informally, teffx(op) is op’s apparent exe-
cution time—its logical execution time
adjusted to compensate for its delta. The

execution distance of op, xdist(op), is
defined as teffx(op) – ts(op). Thus, xdist(op)
= d(op) – δ(c), where c is the copy on
which the memory system executes op.

Correctness criteria

A coherence protocol’s most basic
task is to make replication transparent to
the processors (see the “Related work”
sidebar). The result of any execution
should be as if the requests of the proces-
sors were executed on a single-copy
memory—that is, on a memory contain-
ing a single copy of each variable. Coher-
ence protocols can enforce the follow-
ing ordering properties:

• Sequential consistency. A memory system
enforces SC if “[t]he result of any exe-
cution is as if the [requests] of all the
processors were executed in some
sequential order, and the [requests] of
each individual processor appear in this
sequence in the order specified by the
program.”8 The execution shown in
Figure 2a violates SC, because no
sequential ordering of the requests can
produce the results shown. In Figure
2b, even though P1’s accesses are exe-
cuted out of order, the execution shown
is SC, because it produces the same

results as a sequential execution in
which P1’s accesses are executed in pro-
gram order followed by P2’s accesses
in program order.

• Atomicity. Requests issued as part of the
same transaction or atomic action are
executed so that they appear to be exe-
cuted as an indivisible unit. Thus, the
result of any execution is as if the
requests of all the processors were exe-
cuted in some sequential order and the
requests in each transaction appear as
a contiguous subsequence, not inter-
leaved with other requests. 

We use the term atomicity to mean
consistency (not failure) atomicity; the
guarantee is about the relative order in
which requests appear to be executed, not
about the results of a failure. A protocol
that enforces failure atomicity ensures that
all requests in the same transaction are
executed on an all-or-nothing basis. A
fault-free system is normally assumed in
the context of multiprocessor cache
coherence and is often left to separate
mechanisms in the DSM context. The
isotach prototype uses a sender-based
protocol and a reliable network (Myrinet)
to achieve reliable communication. An
unreliable network would require using a
commit protocol.

Coherence protocols are notoriously hard to prove correct. Logical time has
provided a formal yet intuitive basis for reasoning about coherence1 and has
been widely used in reasoning about protocols that enforce relaxed consistency
semantics.

Message-ordering guarantees have been used elsewhere to increase coher-
ence-protocol concurrency. Race-free networks2 enforce Sequential Consistency
with fewer restrictions on concurrency by restricting the network topology and
the paths taken by updates. Multicast-snooping protocols3 use isotach guaran-
tees to eliminate acknowledgment messages. Protocols can use totally ordered
multicasts to ensure that WRITEs execute atomically and can use causally ordered
messages to ensure execution is consistent with program order.4
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With a few exceptions, cache coher-
ence protocols for multiprocessors and
DSM protocols focus on SC (or a weaker
variant) and leave the task of enforcing
atomicity to separate mechanisms. On the
other hand, databases focus on enforcing
atomicity. The high cost of enforcing SC
and atomicity has led to extensive explo-
ration of weaker memory consistency
models. Whether the resulting improve-
ment in performance justifies the more
complex memory interface is an unde-
cided issue.9 Delta protocols enforce
atomicity and SC using isotach ordering
guarantees without the locks and restric-
tions on pipelining required in conven-
tional systems. Thus, delta protocols rep-
resent an alternative to weakening the
guarantees the memory system offers.

Home update delta
coherence protocol

The home update protocol is the sim-
plest of the delta protocols and serves as
the basis for the other delta protocols,
which include invalidate as well as update
protocols. As its name indicates, it is an
update protocol in which the home is
responsible for distributing updates. The
protocol is a directory protocol: for any
variable v, the home for v stores a direc-
tory that records the set of processors
with cache copies of v. For simplicity, we
assume a bit-vector representation for
the directory: bit i in the bit vector for v
is set if and only if processor i has a cache
copy of v. (A system could use any of 
several tagged directory schemes for
improving the scalability of directories
instead.) We describe both a static copy-
set version of the protocol (static proto-
col) and a dynamic copyset version
(dynamic protocol).

EXECUTING REQUESTS
A CC translates each locally issued

request into one or more operations, called
initiating operations. In the home update

protocol, each request results in exactly one
initiating operation. Other actions the
memory system takes in executing a
request depend on the request type:

• READ miss on variable v. The CC
generates and schedules a read on v’s
home copy (we describe scheduling
later). On receiving the read, v’s
home returns a read response. In the
static protocol, a read response is sim-
ply a message, not an operation—
there is no copy at the receiving CC
on which the read response operates.
On receiving the read response, the
CC returns the value to p.

• READ hit. The CC generates and
schedules a read on v’s cache copy.
(Recall that an operation on the local
copy is a self-message and has a logi-
cal send and receive time.) At the log-
ical receive time, the CC executes the
read on its cache copy, returning the
value to p.

• WRITE (hit or miss). The CC gener-
ates and schedules a write on v’s
home copy. On receiving the write,
v’s home assigns the value to the
home copy and sends a write to every
processor in v’s directory (including p
if p is in v’s directory). Writes that the
home sends are usually called updates.
An own-update is an update a CC
received in response to its own write.
On receiving an update, a CC assigns
the value to the cache copy. 

IMPLEMENTING A DYNAMIC COPYSET
We can adapt the protocol so it can

create and destroy cache copies:5

• A CC destroys its copy of v by send-
ing a release message to v’s home.
The home executes the release by
removing p from v’s directory.

• A CC creates a cache copy as a result
of a miss. When the home receives an
operation on v that p sends, it adds p
to v’s directory. When a CC with no

valid cache copy of v executes a read
response or an own-update on v, it
creates a cache copy.

USING ISOTACH GUARANTEES
The home update protocol, as

described so far, is similar to other update
protocols. The protocol differs from oth-
ers in its use of isotach guarantees.

The isotach invariant lets each CC
control the effective execution time of
requests by scheduling the send times
of initiating operations. The scheduling
algorithm uses this control to enforce
SC:

lastR = 0

for each request R issued by p

if R is a READ hit xdist = 

dist(home,p)

else xdist = dist(p,home);

sendp = max(lastR-xdist,now); 

lastR = sendp;

The CC tracks lastR, the effective
execution pulse of the last request it
scheduled, and schedules the initiating
operation of each new request so that its
effective execution pulse is no less than
lastR. The effective execution pulse is
the pulse component of the effective exe-
cution time. A request with the same
effective execution pulse as the previous
request has a later effective execution
time due to its rank component.

The home MM sends updates as pre-
dictable responses, allowing the defini-
tion of copy deltas and establishing the
relationship between each variable’s
cache and home copies. As we show
later, sending updates as predictable
responses also ensures that all writes
resulting from the same WRITE have the
same effective execution time, with the
result that each WRITE appears to exe-
cute atomically. Although the execution
times of the writes can differ, their effec-
tive execution times are identical because

P1::
 WRITE(v)1;
 WRITE(w)1
P2::
 READ(w)1;
 READ(v)0

P1::
WRITE(v)
WRITE(w)

P2::
READ(w)
READ(v)

v
Initially v=w=0

w
P1::
WRITE(v)
WRITE(w)

P2::
READ(w)
READ(v)

v
Initially v=w=0

w

(a) (b)

Figure 2. (a) Violating sequential consistency; (b) even though P1’s accesses are executed out of order, the execution is SC.
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each copy’s delta exactly offsets the time
required to propagate the update.

Correctness

We prove the correctness of the static
protocol in the “Static protocol” sidebar.
A proof of the full protocol appears else-
where.5 We show that the result of any
execution under the protocol is the same
as it would be if it were executed on
memory system M′, which is known to
be correct. Memory system M′ executes
requests serially in some sequential order

on a single-copy memory, translating
each request into a single operation. We
show that for any execution E of any pro-
gram P on a memory system that uses the
static protocol, there is an equivalent
sequential execution S of P on M′, where
S is SC. A program is a sequence of
requests, in the order in which they are
submitted, and an execution of program
P is the sequence of operations resulting
from P in the order in which they are exe-
cuted. Executions S and E of P are equiv-
alent if every READ in S returns the same
value as the corresponding READ in E.

Atomicity
We can adapt the home update pro-

tocol to execute batches of requests
atomically. Exploiting this capability
changes the programming model—
instead of using locks or barriers to
enforce atomicity, a processor issues
batches of requests called isochrons and
the memory system executes the requests
in each isochron so that they appear to
be executed at the same time. Because a
processor must issue all the requests in
an isochron as a batch, isochrons cannot
contain internal data dependences.

We show that for any execution E of any program P on a
memory system M under the static protocol, there is an equiv-
alent sequential execution S of P on a single-copy memory
system M′, where S is sequential consistency.

Definition. For any request R, the effective execution time
of R is the effective execution time of the initiating operation
resulting from R.

Lemma 1. The effective execution times of requests derived
from execution E of program P define a total order over the
requests in P.

Proof. Because each logical time is a three-tuple in which
the second and third components serve as tie-breakers, each
initiating operation for a request in E has a unique effective
execution time.

Definition. For any program P, let P′ be the permutation of
P in which the requests in P appear in increasing order by
their effective execution times.

Definition. Let S be the execution of P in which the requests
in P are executed on M′ in the order in which the requests
appear in P′.

Lemma 2. All operations resulting from the same request
have the same effective execution time. 

Proof. Because a READ results in only one operation, the
claim is trivially true for READs. A WRITE results in an initiat-
ing write executed on the home copy and an update on each
cache copy. The effective execution time of the initiating write
w is tr(w), because the write is executed on the home copy
and the delta of the home copy is zero. For any update u, the
home sends to copy c′ in response to w, teffx(u) = tr(u) – δ(c′).
Because u is a predictable response to operation op, tr(u) =
tr(w) + dist(home,c′). Thus, teffx(u) = tr(w) + dist(home,c′) –
δ(c′). Because δ(c′) = dist(home,c′), teffx(u) = teffx(w).

Lemma 3. For any copy c in E or S and any two operations
op and op′ executed on c, op and op′ are executed in the
order of their effective execution times.

Proof. For all operations that M executes on any copy c in
E, the difference between the effective execution time and
the execution time is the same, δ(c). Thus, teffx(op) is less than
teffx(op′) if and only if tx(op) is less than tx(op′)—in other words,
M executes operations on c in increasing order by their effec-
tive execution times. By definition of S, M′ executes all opera-
tions in S, including any operations executed on any given copy
c, in increasing order of their effective execution times. 

Lemma 4. For any two requests R and R′, if R is executed on
copy c before R′, then R is executed before R′ on every copy
on which both R and R′ are executed.

Proof. By Lemmas 2 and 3.
Lemma 5. Every READ in P returns the same value in S and E.
Proof. Consider any READ R′ on any variable v in P. M exe-

cutes R′ on exactly one copy c. Let W be the immediately pre-
ceding WRITE on c—the WRITE that assigns the value M
returns in response to R′. Because every request M executes in
E is executed by M′ in S, M′ executes W and R′ on the copy of
v in S. By Lemma 4, because M executes W before R′ on c in E,
M′ executes W before R′ on the copy of v in S. We show by
contradiction that there is no intervening WRITEW′ between
W and R′ on the copy in S. Because, in the static protocol, M
executes every WRITE on v on every copy of v, M executes W′
on c. By Lemma 4, M executes W′ on c between W and R′, con-
tradicting the assumption that W is the immediately preced-
ing write for R′ in E.  Thus, the same write is the immediately
preceding write for R′ in E and S and E and S return the same
value for R′.

Lemma 6. Execution S is SC.
Proof. Consider any two requests R and R′ issued by the

same processor p, where R is issued before R′. Let op be the
initiating operation for R and op′ be the initiating operation
for R′. By the scheduling algorithm, the CC chooses ts(op′)
such that teffx(op′) > teffx(op). Thus, R′ appears after R in P′
and is executed after R in S.

Theorem. The static protocol is correct.
Proof. By Lemma 5, E and S are equivalent. By Lemma 6, S

is SC. Thus, the result of any execution on a memory system
using the static protocol is the same as if it were executed on
M′ in some sequential order consistent with the program order.

Proof of the dynamic protocol requires showing that every
read operation is executed on a copy that has received the
immediately preceding write.1

References
1. C. Williams, P.F. Reynold Jr., and B.R. de Supinski, Delta Coher-

ence Protocols: The Home Update Protocol, Tech. Report CS-
2000-08, Dept. of Computer Science, Univ. of Virginia, Char-
lottesville, Va., Mar. 2000.

Static protocol



28 IEEE Concurrency

However, we can implement atomic
actions with internal data dependences,
using isochrons together with a class of
operations called split operations.10

Adapting the protocol to enforce atom-
icity requires changing only the sched-
uling algorithm. Each CC schedules
requests so that all requests in the same
isochron have the same effective execution
pulse, and schedules each isochron so that
it has an effective execution pulse no less
than the previously scheduled isochron.
We show requests in each isochron are
executed atomically by showing that the
requests occur in the equivalent serial exe-
cution S as a contiguous subsequence.5
Because all requests in the same isochron
have the same effective execution pulse
and are issued by the same processor as a
batch, no other request can have an inter-
vening effective execution time.

IN DELTA PROTOCOLS, each copy c
has a delta, δ(c), equal to the number of
logical pulses by which the copy lags
behind the home copy. The deltas let
nodes control the order in which requests
appear to execute and facilitate proving
delta protocols correct. 

Delta coherence protocols use isotach
guarantees to enforce SC with fewer
restrictions on concurrency than exist-
ing protocols. First of all, under these
protocols, the memory system can
pipeline requests. Existing protocols
that enforce SC require that the execu-
tion of a request not start until the exe-
cution of the previous request issued by
the same processor completes.11 (Sarita
V. Adve and Mark D. Hill have pro-
posed an SC protocol that lets nodes
overlap the execution of a WRITE with
another request, with a restriction that
the effect of the second request cannot
be visible to any node until after the
WRITE is globally performed.12) Delta
protocols can overlap the execution of
requests, requiring only that a request
not appear to complete before the pre-
vious request completes—in other

words, that its effective execution time
not precede that of the previous request.

Second, delta coherence protocols
don’t require acknowledgments. Exist-
ing protocols use acknowledgments to
inform a node when its WRITE com-
pletes. Relying on acknowledgments
adds message traffic and, more impor-
tantly, increases latency—a node delays
executing a request not just until the
completion of the previous request, but
until it receives acknowledgment of the
completion. In delta protocols, a node
determines from local information the
completion time of each request before
it sends the initiating operation. 

Third, multiple processors can write
the same variable concurrently. Invali-
date protocols do not permit concurrent
writes, though update protocols do, sub-
ject to the restriction that writes are not
immediately readable. 

Fourth, writes are immediately read-
able. In the absence of strong message-
ordering guarantees, existing protocols
that ensure SC cannot return the value
of a read to a cache copy until the WRITE
that supplied that value is globally per-
formed—that is, until all cache copies are
updated or invalidated.11 This require-
ment is easy to satisfy in invalidation pro-
tocols but difficult in update protocols.

Finally, processors can execute mul-
tiple requests atomically without locks.
Most existing protocols that enforce
atomicity use two-phase locking. Alter-
natively, protocols can assign transac-
tions timestamps and abort and restart
any transactions that cannot be executed
in timestamp order. Delta protocols let
a processor access multiple variables
atomically without locks or restarts.
Processors can execute isochrons with-
out synchronizing or obtaining exclusive
access to the variables accessed.

Delta protocols offer a significantly
higher level of concurrency than exist-
ing coherence protocols, while a proto-
type isotach network implementation
demonstrates that the cost of providing
this additional concurrency is low. We
expect delta protocols to be useful in
applications that maintain many copies
of data items or in which data contention
is high.  
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